Math 210A Lecture 19 Notes

Daniel Raban

November 14, 2018

1 The Jordan-Hölder Theorem and Solvable Groups

1.1 The Jordan-Hölder theorem

Last time we had a lemma which said that if $N \leq G$, then a composition series for N comes from a composition series for G by taking $H_i \cap N$ and eliminating duplicates. A composition series for G/N comes from $H_i N/N$ and eliminating duplicates. If the composition series for N has length r, and the composition series for G/N has length s, then r + s = t, where t is the length of the composition series for G.

Lemma 1.1. Let $N \leq G$. There exists a 1 to 1 correspondence between subgroups of G containing N and subgroups of G/N.

Lemma 1.2. Let $N \leq G$ have composition series $1 = H_0 \leq \cdots \leq H_s = N$ and G/N have composition series $1 = Q_0 \leq \cdots \leq Q_r = G/N$. Then let H_{s+i} be the unique subgroup of G containing N with $N_{s+i}/N = Q_i$. Then $1 = H_0 \leq \cdots \leq H_t = G$ for t = r + s is a composition series for G, and $H_{s+i}/H_{s+i-1} \cong Q_i/Q_{i-1}$.

Theorem 1.1 (Jordan-Hölder). Let G be a finite group.

- 1. G has a composition series.
- 2. If $G \neq 1$ with two composition series $(K_i)_{i=0}^s$ and $(H_j)_{j=0}^t$, then s = t, and there exists $\sigma \in S_t$ such that $H_{\sigma(i)}/H_{\sigma(i)-1} \cong K_i/K_{i-1}$.

Proof. Proceed by induction on |G|. If G is simple, $1 \leq G$ is the only composition series, and we are done. If G is not simple, there there exists a proper normal subgroup $N \leq G$ with $N \neq 1$. By induction, N and G/N have composition series. By the lemma, G has a composition series, as well.

To prove the second statement induct on the minimal length s of a composition series $(K)_{i=0}^{s}$. If s = 1, then G is simple, so this case is done. Let $N = K_{s-1} \trianglelefteq G$. N has the composition series $(K_i)_{i=0}^{s-1}$. N also has the composition series $(H_{f(i)} \cap N)_{i=0}^r$ where $f : \{0, \ldots, r\} \to \{0, \ldots, t\}$ is increasing with f(0) = 0. By induction, r = s - 1, and there exists a $\sigma \in S_{s-1}$ such that $K_i/K_{i-1} \cong (H_{f(\sigma(i))} \cap N)/(H_{f(\sigma(i))-1} \cap N)$.

Let k < r be maximal such that $H_{k-1} \leq N$. Then $H_{k-1} \cap N = H_{k-1} \leq H_k \cap N < H_k$. So $H_{k-1} = H_k \cap N$, which implies that $k \notin \operatorname{im}(f)$. Then $H_k/H_{k-1} \cong H_k/(H_k \cap N) \cong H_kN/N = G/N$. If $(H_iN)/(H_{i-1}N) \neq 1$ for $i \neq k$, then G/N has composition series of length ≥ 2 , but G/N is simple. So r = t - 1.

1.2 Solvable groups

Definition 1.1. Let $G_{i\geq 0}^{(i)}$ be descending. The series $G^{(0)} = G$, $G^{(1)} = G' = [G, G]$, with general term $G^{(i+1)} = [G^{(i)}, G^{(i)}]$ for all $i \geq 0$ is called the **derived series** of G.

Definition 1.2. A group G is **solvable** if it has finite derived series.

Example 1.1. Abelian groups are solvable.

Example 1.2. Semidirect products of abelian groups are solvable. If $G = N \rtimes H$, then $G' \leq N$ and G'' = 1.

Example 1.3. Simple nonabelian groups are not solvable. If G is simple and nonabelian, then G' = G.

Example 1.4. Let R be a commutative ring. The Heisenberg group

$$H = \left\{ \begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix} \right\} \subseteq \operatorname{GL}_3(R)$$

is solvable.

$$\begin{bmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & xy \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

 \mathbf{SO}

$$H' = \left\{ \begin{bmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\} = Z(H),$$

and H'' = 1.

Proposition 1.1. The following are equivalent:

- 1. G is solvable.
- 2. G has a normal series with abelian composition factors.
- 3. G has a subnormal series with abelian composition factors.

Proof. We need only show that $3 \implies 1$. Let $1 = N_t \leq \cdots \leq N_1 \leq N_0$ with abelian composition factors. Then G/N_i is abelian iff $G' \leq N_i$. N_{i-1}/N_i is abelian, so $N_i \geq (N_{i-1})' \geq G^{(i+1)}$. So $G^{(t)} = 1$ so G is solvable.

Lemma 1.3. Let G be a group.

1. If G is solvable, then $H \leq G$ is solvable and G/N is solvable for $N \leq G$.

2. If $N \leq G$ and G/N are both solvable, then G is solvable.

Proposition 1.2. A group G with a composition series is solvable if and only if it is finite and its Jordan Hölder factors are all cyclic of prime order.